Update AScannerDarkly
|
@ -4,3 +4,4 @@ find_package( OpenCV REQUIRED )
|
|||
include_directories( ${OpenCV_INCLUDE_DIRS} )
|
||||
add_executable( AScannerDarkly main.cpp )
|
||||
target_link_libraries( AScannerDarkly ${OpenCV_LIBS} )
|
||||
target_link_libraries( AScannerDarkly -llept -ltesseract )
|
||||
|
|
After Width: | Height: | Size: 5.2 KiB |
After Width: | Height: | Size: 124 KiB |
After Width: | Height: | Size: 126 KiB |
After Width: | Height: | Size: 115 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 10 KiB |
After Width: | Height: | Size: 9.0 KiB |
After Width: | Height: | Size: 4.7 KiB |
After Width: | Height: | Size: 4.7 KiB |
After Width: | Height: | Size: 4.8 KiB |
After Width: | Height: | Size: 5.0 KiB |
|
@ -1,7 +1,10 @@
|
|||
#include <opencv2/opencv.hpp>
|
||||
#include <tesseract/baseapi.h>
|
||||
#include <leptonica/allheaders.h>
|
||||
#include <string>
|
||||
|
||||
const std::string WINDOW_NAME = "A Scanner Darkly";
|
||||
const std::string SCANNER_WINDOW_NAME = "A Scanner Darkly";
|
||||
const std::string CARD_WINDOW_NAME = "Detected Card";
|
||||
|
||||
const std::string CANNY_LOWER_THRESHOLD_TRACKBAR_NAME = "Canny: Lower Threshold";
|
||||
|
||||
|
@ -10,9 +13,112 @@ const std::string ASPECT_RATIO_TOLERANCE_TRACKBAR_NAME = "Aspect Ratio Tolerance
|
|||
int g_aspect_ratio_tolerance = 1;
|
||||
const int MAX_ASPECT_RATIO_TOLERANCE = 100;
|
||||
|
||||
int g_Canny_lower_threshold = 110;
|
||||
int g_Canny_lower_threshold = 195;
|
||||
const int CANNY_UPPER_THRESHOLD = 255;
|
||||
|
||||
cv::Mat cropImageToRoi(cv::Mat img, cv::Rect roi) {
|
||||
return img(roi);
|
||||
}
|
||||
|
||||
cv::Mat detectCardInFrame(cv::Mat frame) {
|
||||
cv::Mat grayscaleFrame, blurFrame, cannyFrame, cardFrame;
|
||||
|
||||
// Perform edge detection
|
||||
cv::cvtColor(frame, grayscaleFrame, cv::COLOR_BGR2GRAY);
|
||||
cv::GaussianBlur(grayscaleFrame, blurFrame, cv::Size(5, 5), 2, 2);
|
||||
cv::Canny(blurFrame, cannyFrame, g_Canny_lower_threshold, CANNY_UPPER_THRESHOLD);
|
||||
|
||||
// Perform contour detection
|
||||
std::vector<std::vector<cv::Point>> contours;
|
||||
std::vector<cv::Vec4i> hierarchy;
|
||||
cv::findContours(cannyFrame, contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);
|
||||
|
||||
// Detect convex hulls
|
||||
std::vector<std::vector<cv::Point>> hull(contours.size());
|
||||
for(size_t i = 0; i < contours.size(); i++) {
|
||||
cv::convexHull(contours[i], hull[i]);
|
||||
}
|
||||
|
||||
// Detect RotatedRects
|
||||
std::vector<cv::RotatedRect> minRect(contours.size());
|
||||
for(size_t i = 0; i < contours.size(); i++) {
|
||||
minRect[i] = cv::minAreaRect(contours[i]);
|
||||
}
|
||||
|
||||
// Draw lines around RotatedRects
|
||||
/*
|
||||
cv::Scalar rectangleColor(255, 0, 0, 0);
|
||||
cv::Point2f rect_points[4];
|
||||
minRect[i].points(rect_points);
|
||||
for (int j = 0; j < 4; j++) {
|
||||
cv::line(frame, rect_points[j], rect_points[(j + 1) % 4], rectangleColor);
|
||||
}
|
||||
*/
|
||||
|
||||
// Find possible cards
|
||||
std::vector<cv::RotatedRect> possibleCards(contours.size());
|
||||
int possibleCount = 0;
|
||||
for (size_t i = 0; i < minRect.size(); i++) {
|
||||
float aspectRatio = minRect[i].size.height / minRect[i].size.width;
|
||||
float aspectRatioTolerance = g_aspect_ratio_tolerance / 100.0f;
|
||||
if (aspectRatio < (CARD_ASPECT_RATIO - aspectRatioTolerance) || aspectRatio > (CARD_ASPECT_RATIO + aspectRatioTolerance)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
cv::putText(frame, std::to_string(minRect[i].angle), minRect[i].center, cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(255, 0, 0, 0));
|
||||
|
||||
possibleCards[possibleCount] = minRect[i];
|
||||
possibleCount++;
|
||||
}
|
||||
|
||||
if (possibleCount == 1) {
|
||||
return cropImageToRoi(frame, possibleCards[0].boundingRect());
|
||||
} else if (possibleCount > 1) {
|
||||
// If we have more than one possible match, take the largest one
|
||||
int largestCardIndex = 0;
|
||||
int largestCardSize = 0;
|
||||
|
||||
for (size_t i = 0; i < possibleCards.size(); i++) {
|
||||
float size = possibleCards[i].size.width * possibleCards[i].size.height;
|
||||
if (size >= largestCardSize) {
|
||||
largestCardIndex = i;
|
||||
largestCardSize = size;
|
||||
}
|
||||
}
|
||||
|
||||
// Some basic error checking to ensure the RotatedRect is roughly card-sized
|
||||
if (largestCardSize >= 14400 && largestCardSize <= 200000) {
|
||||
return cropImageToRoi(frame, possibleCards[largestCardIndex].boundingRect());
|
||||
}
|
||||
}
|
||||
|
||||
return cv::Mat();
|
||||
}
|
||||
|
||||
const char* readTextFromImage(cv::InputArray img) {
|
||||
const char* tempFilename = "temp.bmp";
|
||||
|
||||
// Initialize Tesseract api
|
||||
tesseract::TessBaseAPI* tess = new tesseract::TessBaseAPI();
|
||||
tess->Init(NULL, "eng");
|
||||
tess->SetPageSegMode(tesseract::PSM_SPARSE_TEXT);
|
||||
|
||||
// Load image into Tesseract
|
||||
cv::imwrite(tempFilename, img);
|
||||
Pix* pixd = pixRead(tempFilename);
|
||||
tess->SetImage(pixd);
|
||||
tess->Recognize(0);
|
||||
|
||||
// Perform OCR
|
||||
const char* out = tess->GetUTF8Text();
|
||||
|
||||
// Cleanup
|
||||
pixDestroy(&pixd);
|
||||
std::remove(tempFilename);
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv ) {
|
||||
cv::VideoCapture cap;
|
||||
cap.open(0);
|
||||
|
@ -22,71 +128,34 @@ int main(int argc, char** argv ) {
|
|||
return -1;
|
||||
}
|
||||
|
||||
std::cout << "Card aspect ratio: " << CARD_ASPECT_RATIO << std::endl;
|
||||
cv::namedWindow(SCANNER_WINDOW_NAME);
|
||||
|
||||
cv::namedWindow(WINDOW_NAME);
|
||||
cv::createTrackbar(CANNY_LOWER_THRESHOLD_TRACKBAR_NAME, SCANNER_WINDOW_NAME, &g_Canny_lower_threshold, CANNY_UPPER_THRESHOLD, NULL);
|
||||
cv::createTrackbar(ASPECT_RATIO_TOLERANCE_TRACKBAR_NAME, SCANNER_WINDOW_NAME, &g_aspect_ratio_tolerance, MAX_ASPECT_RATIO_TOLERANCE, NULL);
|
||||
|
||||
cv::createTrackbar(CANNY_LOWER_THRESHOLD_TRACKBAR_NAME, WINDOW_NAME, &g_Canny_lower_threshold, CANNY_UPPER_THRESHOLD, NULL);
|
||||
cv::createTrackbar(ASPECT_RATIO_TOLERANCE_TRACKBAR_NAME, WINDOW_NAME, &g_aspect_ratio_tolerance, MAX_ASPECT_RATIO_TOLERANCE, NULL);
|
||||
|
||||
cv::Mat frame, grayscaleFrame, blurFrame, cannyFrame;
|
||||
cv::Mat frame, cardFrame;
|
||||
while (true) {
|
||||
cap >> frame;
|
||||
//cardFrame = detectCardInFrame(frame);
|
||||
cv::imshow(SCANNER_WINDOW_NAME, frame);
|
||||
|
||||
cv::cvtColor(frame, grayscaleFrame, cv::COLOR_BGR2GRAY);
|
||||
cv::GaussianBlur(grayscaleFrame, blurFrame, cv::Size(5, 5), 2, 2);
|
||||
cv::Canny(blurFrame, cannyFrame, g_Canny_lower_threshold, CANNY_UPPER_THRESHOLD);
|
||||
|
||||
std::vector<std::vector<cv::Point> > contours;
|
||||
std::vector<cv::Vec4i> hierarchy;
|
||||
cv::findContours(cannyFrame, contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);
|
||||
|
||||
std::vector<std::vector<cv::Point>> hull(contours.size());
|
||||
for(size_t i = 0; i < contours.size(); i++) {
|
||||
cv::convexHull(contours[i], hull[i]);
|
||||
}
|
||||
|
||||
std::vector<cv::RotatedRect> minRect(contours.size());
|
||||
for(size_t i = 0; i < contours.size(); i++) {
|
||||
minRect[i] = cv::minAreaRect(contours[i]);
|
||||
}
|
||||
|
||||
//cv::Scalar contourColor = cv::Scalar(255, 0, 0);
|
||||
cv::Scalar hullColor = cv::Scalar(0, 255, 0);
|
||||
cv::Scalar rectangleColor = cv::Scalar(0, 0, 255);
|
||||
|
||||
for (size_t i = 0; i< contours.size(); i++) {
|
||||
//cv::drawContours(frame, contours, (int)i, contourColor, 2, cv::LINE_8, hierarchy, 0);
|
||||
//cv::drawContours(frame, hull, (int)i, hullColor, 2, cv::LINE_8);
|
||||
|
||||
// TODO: A purely aspect-ratio-based detection method returns too many false positives
|
||||
// inside of a card, even after screwing around with various algorithm parameters.
|
||||
// We have two potential options to fix this:
|
||||
// - Only take the largest detected RotatedRect with the correct aspect ratio
|
||||
// - Perform the camera calibration necessary to take accurate real-world measurements
|
||||
float aspectRatio = minRect[i].size.height / minRect[i].size.width;
|
||||
float aspectRatioTolerance = g_aspect_ratio_tolerance / 100.0f;
|
||||
if (aspectRatio < (CARD_ASPECT_RATIO - aspectRatioTolerance) || aspectRatio > (CARD_ASPECT_RATIO + aspectRatioTolerance)) {
|
||||
continue;
|
||||
/*
|
||||
if (cardFrame.size().width > 0) {
|
||||
printf("Card detected\n");
|
||||
while (true) {
|
||||
cv::imshow(CARD_WINDOW_NAME, cardFrame);
|
||||
char c = (char)cv::waitKey(33);
|
||||
if (c == 27) {
|
||||
cv::destroyWindow(CARD_WINDOW_NAME);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
cv::Point2f rect_points[4];
|
||||
minRect[i].points(rect_points);
|
||||
for (int j = 0; j < 4; j++) {
|
||||
cv::line(frame, rect_points[j], rect_points[(j + 1) % 4], rectangleColor);
|
||||
}
|
||||
cv::putText(frame, std::to_string(aspectRatio), minRect[i].center, cv::FONT_HERSHEY_COMPLEX, 1, hullColor);
|
||||
}
|
||||
|
||||
cv::imshow(WINDOW_NAME, frame);
|
||||
*/
|
||||
|
||||
char c = (char)cv::waitKey(33);
|
||||
if (c == 27) {
|
||||
break;
|
||||
} else if (c == 's') {
|
||||
cv::imwrite("output.png", frame);
|
||||
}
|
||||
}
|
||||
|
||||
cv::destroyWindow(WINDOW_NAME);
|
||||
}
|
||||
|
|
After Width: | Height: | Size: 301 KiB |